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                                  ABSTRACT KEYWORDS

 

Hub location-allocation problems are currently a subject of keen interest 

in the research community. However, when this issue is considered in 

practice, significant difficulties such as traffic, commodity transportation 

and telecommunication tend to be overlooked. In this paper, a novel 

robust mathematical model for a p-hub covering problem, which tackles 

the inherent uncertainty of some parameters, is investigated. The main 

aim of the mathematical model is to minimize costs involving: 1) the 

covering cost; 2) the sum of the transportation costs; 3) the sum of the 

opening cost of facilities in the hubs; 4) the sum of the reopening cost of 

facilities in hubs; 5) the sum of the activating cost facilities in hubs; and 

6) the sum of the transporters' purchasing cost. To solve this model, the 

new extensions of the robust optimization theory are used. To evaluate 

the robustness of the solutions obtained by the novel robust optimization 

approach, they are compared to those generated by the deterministic 

mixed-integer linear programming (MILP) model for a number of 

different test problems. Finally, the conclusions are presented. 
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1. Introduction
1
 

A number of helpful strategies (e.g., alliances and 

coalitions) are currently being either formed or investigated 
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because of the significant increase in transportation, 

logistics and telecommunications. Many industrial studies 

are dedicated to these areas, in which hub-and-spoke 

structures have elicited a lot of interest. They present the 

possibilities of well-organized capacity allocation and fleet 

management on different legs of transportation routes. 

 In a hub-and-spoke network, the hub nodes are linked to 

common nodes by routes called spokes. Relations between 
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the hubs themselves account for most of the transport 

capacities, economies of scale and pollution decrease. The 

former two advantages are the main reasons for 

establishing such a transportation system. A hub has three 

main functions: to collect flows arriving from any node of 

the network; to redistribute flows toward each destination 

point; and to send the aggregated flow to another hub for 

further redistribution. The location of hubs in networks is a 

non-deterministic polynomial time complete (NP-

complete) combinatorial optimization problem with a two-

part solution which determines the network’s vertices that 

should function as hubs, and attributes the 

origin/destination nodes of each flow to their respective 

hubs. The solution aims to present the lowest total network 

cost for routing the flows between all O–D (origin–

destination) pairs. The capacitated single-allocation hub 

location problem (CSHLP) is the specific case that 

incorporates flow capacity limits, either in the net links or 

at the vertices. Its single-allocation feature restricts each 

node to send or receive flows by only one hub.  

As a whole, the hub location-allocation problem is divided 

into three sub-problems, namely p-hub median, p-hub 

center and p-hub covering. In the p-hub median problem, 

the aim is to minimize the total shipping cost; however, the 

p-hub center problem minimizes the maximum cost or time 

in the communication lines.  

In the p-hub covering problem, the main objective is to 

minimize the maximum covering radius in such a way that 

all of the customer nodes fall into the dedicated covering 

radius of potential hub centers. Even though hub location 

problems have been considered quite analytically in the last 

decade, only a few researchers have considered the hub 

covering problems. In general, the maximal covering 

location problem (MCLP) is a location problem that has 

been roughly considered in the literature. The main 

objective of the MCLP is to choose the location of facilities 

in order to maximize the population that has a facility 

within a maximum travel distance (or time). Thus, a 

population is covered if it is inside a predefined service 

distance (or time) from at least one of the existing facilities. 

The MCLP presents services to the maximum number of 

individuals in the population, bearing in mind the available 

sources. In respect of its formulation, various extensions of 

the MCLP have been devised to increase its applicability, 

in both the public and private sectors. Some applications 

exist in the literature; for example, Marianov and Serra [18] 

worked on congested systems. 

In this paper, a different type of single-assignment hub 

covering problem is examined, with regard to production 

facilities and transporter vehicles. These production 

facilities are established only in hub centers considered as 

serving centers. Time horizons, through which facilities 

can be opened and reopened repeatedly, are considered. A 

variety of transporter vehicle types to ship the produced 

commodities are also considered.  

Regarding the above-mentioned problems, the considered 

mathematical model has one objective, to minimize total 

cost involving: 1) the covering cost, 2) the sum of the 

transportation costs, 3) the sum of the opening costs of 

facilities in hubs, 4) the sum of the reopening costs of 

facilities in hubs, 5) the sum of the activating costs of 

facilities in hubs, and 6) the sum of the vehicle use costs. 

Minimizing these costs in such a way that customer 

demands are satisfied is the main aim. In addition, to come 

close to reality, some parameters are regarded as uncertain. 

The robust counterpart of the proposed MILP model is also 

developed to cope with the uncertainty. The numerical tests 

show the power of the proposed robust model in handling 

uncertainty in parameters and generating robust optimal 

solutions. 

The remainder of this paper is organized as follows. After 

systematically reviewing the literature in Section 2, the 

problem is defined and an efficient mix-integer linear 

programming (MILP) model is developed in Section 3. The 

solution methodology for the proposed model is developed 

in Section 4, and the computational results are reported in 

Section 5. Finally, Section 6 concludes this paper and 

presents directions for further research. 

 

2. Motivation 
In this research, we take into account the model 

devised by Ghodratnama et al. [35]. They exploited from 

the unique characteristic of a hub and spoke network to 

install plants into the optimum points regarded as hub 

nodes. The plants installed into these nodes serve the client 

nodes or spoke nodes. In this respect, vehicles convey the 

commodity manufactured by these plants to customer or 

client node. However, in this research, to come close to 

reality, we consider uncertain environment by the name of 

robust. The robust approach used to handle this 

environment is the recent one devised by Ben-Tal et al 

[2,3]. The results show as a whole by solving the 

deterministic problem, in which the degree of uncertainty is 

zero the value of objective function is less than the robust 

one. Nevertheless, an increasing trend is reported as we 

increase the uncertain parameters of all mathematical 

model parameters. The sensitivity analysis shows that for 

some uncertain parameters there exists no feasible solution. 

Additionally, the constant trend for some uncertain 

parameter is observed. It means that as the uncertain 

parameters grow, the objective function value is constant. 

Interestingly, after specified uncertain parameter, the 

objective function value decreases and following the 

mentioned value the infeasibility is reported.    

 

3. Literature Review 
In network hub location allocation problems, a given 

network with n nodes, consisting of the set of origins, 

destinations and potential hub locations, is considered. The 

flow between origin–destination pairs, an important 

characteristic of flows in the network (e.g., cost, time, 

distance) and the hub-to-hub shipping discount factor are 

identified. In this problem, locating hub services on a plane 

rather than on the nodes of a network is taken into account.  

Hub location has different application areas in 

telecommunication network and transportation plans. 

Research on many of these is reported in the literature. Mu 

[21] devised a unified framework for site selection and 

business forecasting using ANP. Levy [16] considered a 

case for sustainable security systems engineering: 

integrating national, human, energy and environmental. Lin 
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et al. [17] considered a backbone of technology evolution 

in the modern era automobile industry security. 

In telecommunication network design, the concept of the 

hub location problem has also been explored. For a wide 

review on hub location in network design. 

 In this research, Klincewicz specifically investigated 

telecommunication and computer systems. The hub 

location problem in the network plan differs somewhat 

from the usual hub location literature, for example, in 

locating hub facilities and allocating nodes to them. The 

cost of installing the capacity on each edge, essential to 

routing the traffic on the edge itself, was investigated by 

Carello et al. [6]. A comparable problem, called the 

uncapacitated hub location problem, with modular arc 

capacities, was studied by Yaman [31]. While trying to 

minimize the costs of establishing hubs and capacity units, 

he calculated the integer amounts of capacity units on the 

arcs. Yaman and Carello [31] considered the capacitated 

version of this problem, in which the capacity of a hub is 

defined as the amount of traffic passing through it. Yao and 

Hsu [33] proposed a new spanning tree-based genetic 

algorithm (GA) for determining the optimal locations of the 

hubs and the optimal transportation routes in such a way 

that the total costs are minimized.  

In facility covering problems, if customers are within a 

particular distance of a facility that can serve their 

demands, they are considered to be covered. Like the p-hub 

center problem, three coverage criteria for hubs were 

presented as follows:  

The origin destination pair (i, j) is covered by hubs l and m 

only if: 

Each of the origin-hub and hub-destination arcs meets 

distinct specific values.  

The cost for each link in the path from i to j via l and m 

does not go beyond a definite value.  

The cost from i to j via l and m does not surpass a definite 

value.  

Locating hubs to cover up all the demands of customer 

nodes, such that the cost of opening hub facilities is 

minimized, is the main aim of the hub set-covering 

problem. On the other hand, the maximal hub-covering 

problem maximizes the demand covered up by means of a 

given number of hubs to locate. Kara and Tansel [14] 

produced the first effort improvement to the initial single 

assignment hub covering mathematical model. They 

considered the single-allocation hub set-covering problem 

and proved that it was NP-hardness. These authors plan and 

compare three different linearizations of the main quadratic 

model. In addition, they present a new linear model. The 

superiority of the performance of this new model is 

depicted to all of the other devised linear models.  

New mathematical expressions for both single and 

multiple-allocation hub covering problems were designed 

by Wagner [27]. In his planned preprocessing methods, 

some hub assignments ruled out in this way required fewer 

variables and constraints than that of the mathematical 

model introduced by Kara and Tansel [14]. Wagner's 

mathematical model integrating certain constraints was 

thus an improvement. After that, a new mathematical 

model for the single-allocation hub set covering problem 

was devised by Ernst et al. [9] for the p-hub center problem 

considered by Ernst et al. [10]. They proposed a new idea 

in the hub covering problem area, namely the covering 

radius.  

These authors strengthened the mathematical model 

proposed by Kara and Tansel [14] by replacing a constraint 

by its integrating form. They then compared this new 

model with the one presented by Kara and Tansel [14] 

found that it performed better in terms of the CPU time 

requirement. Ernst et al. [10] also considered the multiple 

allocation hub set-covering problems and devised two new 

mathematical models and an implicit enumerative method 

for this problem. Various mathematical models of the hub 

covering problem were subsequently compared by 

Hamacher and Meyer [13], who surveyed the feasibility 

polyhedron and recognized some facet-defining valid 

inequalities. They solved the hub set-covering problem for 

a specified cover radius b, and then iteratively decreased b 

to get the optimum solution of the p-hub center problem.  

Calik et al. [5] studied the single assignment hub covering 

related to the incomplete hub network, and presented a 

mixed-integer mathematical model for the given problem. 

The main aim of their model is to find hub locations related 

to each other and customer nodes allocated to hub nodes in 

such a way that transportation times from origin nodes to 

destination nodes fall into the predefined interval. Weng et 

al. [29] studied a partial hub location allocation problem 

considering multiple assignments. Tan and Kara [26] 

presented a complete single-assignment hub covering 

model considering the commodity delivering centers. 

Berman et al. [4] meticulously surveyed the new 

developments in covering location models. Qu and Weng 

[23] proposed a path re-linking approach for a multiple hub 

maximal covering problem. Mohammadi et al. [34] 

considered a single assignment hub covering problem with 

capacities on hubs and solved their model by a hybrid 

algorithm based on genetic algorithms (GA) and simulated 

annealing (SA) using the random generated data.  

Calik et al. [5] presented a single assignment hub covering 

model as a incomplete graph and proposed a heuristic 

approach to solve the model. Sahraeian and Korani [24] 

devised a hierarchical multiple assignment hub location-

allocation problem considering partial covering with a 

predefined covering radius. Mohammadi et al. [20] 

presented a new model for the capacitated single allocation 

hub covering location problem and proposed the imperialist 

competitive algorithm to solve their multi-objective 

mathematical model. In addition, Karimi and Bashiri [15] 

investigated hub covering location problems with different 

coverage types. Dias et al. [8] presented a capacitated 

dynamic location mathematical model considering opening, 

closure and reopening of facilities. However, recently 

numerous research works have been accomplished in a hub 

location-allocation area. For further information, the reader 

can refer to the literature [36-41]. 

To the best of our knowledge, in uncertain environments 

(e.g., fuzzy, stochastic and robust ones), there is no 

research that has directly investigated hub covering 

problems. Some researchers have however recently 

investigated the stochastic hub location problem. 

Associated to this, a stochastic mathematical model for an 

air freight hub location and flight routes planning problem 
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was developed by Yang [32], who investigated a real-case 

study related to good transportation. Conteras et al. [7] 

surveyed a stochastic uncapacitated hub location problem, 

in which uncertainty was related to demands and 

transportation costs. Sim et al. [25] considered the 

stochastic p-hub center problem with chance constraints 

with the service-level guarantees.  

Menou et al. [19] considered a decision support 

problem for centralizing cargo at the Moroccan airport 

hub, using a stochastic multi-criteria acceptability 

analysis. They presented significant uncertainty in both 

the criteria measurements and the preferences. In 

addition, regarding fuzzy environments, Taghipourian 

et al. [11] developed a fuzzy programming approach for 

a dynamic virtual hub location problem. Table 1 

summarizes the characteristics of relevant performed 

studies on hub covering problems, so far.  

 

Tab. 1. Review of the existing literature 

Authors 
Year 

Published  

Model 

Name 

Type of Covering Type of Model 
Number 

of hubs 

Cost of hub 

installation 

Cost of hubs 

connecting 

Cost of connecting 

hubs to customers 
Complete Partial Linear Nonlinear 

Kara and Tansel [14] 2003 

HC √ 
  

√ √ 
   

HC-Lin √ 
 

√ 
 

√ 
   

Wagner [27]  2004 

SAQI-W1 √ 
 

√ 
 

√ 
   

SAQI-W2 √ 
 

√ 
 

√ 
   

SAQD-W √ 
 

√ 
 

√ 
   

MAQI-W √ 
 

√ 
 

√ 
   

Ernst et al. [10] 2005 

USAHCOP-

r 
√ 

 
√ 

 
√ 

   

USAHCOP-

3 
√ 

 
√ 

 
√ 

   

Weng et al. [29] 2006 MAHMCP 
 

√ √ 
     

Tan and Kara [26]  2007 -------- √ 
 

√ 
 

√ 
   

Weng and Yang [29] 2006 MAHSCP √ 
 

√ 
 

√ √ 
  

Qu and Weng [23] 2009 
MAHMCP 

 
√ √ 

     

MAHSCP √ 
 

√ 
 

√ √ 
  

Calik et al. [5] 2009 -------- √ 
 

√ 
 

√ √ √ 
 

Ghodsi et al. [12] 2010 CSAHCLP √ 
 

√ 
 

√ √ √ √ 

Sahraeian and Korani 

[24] 
2011 

SA-TH-

HMC  
√ √ 

     

Ghodratnama et al.[35] 2013 FBP-HC √ 
 

√ 
 

√ √ √ √ 

Ghodratnama  et al.  2014 RP-HC √ 
 

√ 
 

√ √ √ √ 

 

Cont’d – Tab. 1. Review of the existing literature

Type Assignment Capacity 
Solution 

Approach 
Data 
Base 

Crisp Robust Fuzzy Single Multiple Capacitated Uncapacitated Exact Heuristic 
Meta-

heuristic 
AP CAB Turkish 

Rand

om 

√ 
  

√ 
  

√ √ 
     

√ 

√ 
  

√ 
  

√ √ 
   

√ 
  

√ 
  

√ 
  

√ √ 
     

√ 

√ 
  

√ 
  

√ √ 
  

√ √ 
  

√ 
  

√ 
  

√ √ 
     

√ 

√ 
   

√ 
 

√ √ 
  

√ √ 
  

√ 
  

√ 
  

√ √ 
  

√ √ 
  

√ 
   

√ 
 

√ √ 
  

√ √ 
  

√ 
   

√ 
 

√ √ 
  

√ 
  

√ 
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√ 
  

√ 
  

√ √ 
   

√ √ 
 

√ 
   

√ 
 

√ 
  

√ √ 
   

√ 
   

√ 
 

√ 
 

√ 
 

√ 
  

√ 

√ 
   

√ 
 

√ √ 
     

√ 

√ 
  

√ 
  

√ 
 

√ 
  

√ √ 
 

√ 
  

√ 
 

√ 
   

√ 
   

√ 

√ 
  

√ 
  

√ √ 
   

√ 
  

  
√ √ 

 
√ 

 
√ 

     
√ 

 
√ 

 
√ 

 
√ 

 
√ 

     
√ 

 

4. Mathematical model 
In this section, the novel mathematical model for a p-

hub covering location-allocation problem is considered. 

This model takes into account a number of facilities which 

produce goods and are active through time horizons. Each 

facility can be opened and reopened repeatedly over time. 

Depending on the demand operational constraint, activation 

and non-activation can take place. This model minimizes 

the total costs including covering, transporting, opening, 

reopening, activating and using vehicles. Some operational 

constraints relating to the covering problem, facility 

characteristics, demands and time horizons are also 

investigated. To come close to reality, some of the 

parameters are regarded as indefinite. Model assumptions, 

indices, parameters and decision variables are presented 

below. 
 

4-1. Assumptions 

 The number of customers is predefined. 

 The number of hubs is predefined. 

 The number of facilities satisfying the demands of 

customers is deterministic. 

 The demands of customers are deterministic and 

predefined. 

 Each facility has the minimum and maximum 

capacities. 

 Each facility has the opening and reopening fixed 

costs. 

 There is interchange between hubs by considering 

the discount factor in the related cost. 

 Transportation costs between each facility and each 

customer are fixed. 

 The planning horizon consists of multiple periods 

and is predefined. 

 Facilities should be located in hub centers. 

 Facilities can be opened only once. 

 Facilities can be reopened numerously through 

time horizons. 

 Capacities of facilities are predefined 

 Capacities of vehicles are different 

 Opening costs of facilities are predefined. 

 Reopening costs of facilities are predefined. 

 Using costs of vehicles are predefined. 

 Each vehicle type has a unique capacity. 
 

In addition, to illuminate the features of this problem and 

mathematical model, three figures have been considered.  

Two hubs, namely k and m where facilities have been 

located, are taken into account, as shown in Figure. 1. They 

are represented as large rectangles. These facilities produce 

commodities to satisfy the customer node demands, 

represented as circles. For hubs k and m, the covering radii 

are rk and rm , which represent the distances to the farthest 

customer nodes served by them. The maximum cost is 

associated to the route i-k-m-j, in which the flow 

originating from customer node i destined to node j via 

hubs k and m. Customer nodes have been depicted as 

hexagons. To transmit commodities to customers, 

transporter vehicles are also used. These vehicles have 

been represented as small rectangles.   

 
Fig. 1. Schema of hubs covering problem considering 

facilities located in hubs and transportation vehicles. 
 

Figure. 2 depicts customer nodes as hexagons and their hub 

node as a big rectangle in which facilities serving customer 

nodes have been shown on a larger scale as circles. In this 

case, Facility 1 serves customer nodes one, seven and six, 

Facility 2 serves customer nodes two and three, and 

Facility 3 serves customer nodes four and five. In addition, 

vehicles serving the customer nodes, by shipping the 

commodities originating from the hub, have been 

represented as small rectangles. Figure. 3 shows that T time 

periods and n facilities are investigated. For instance, 

Facility 2 is opened in Period 1 and is active until the end 

of Period 2. It is inactive in Period 3. However, it is 

reopened at least once through the time horizons.  
 

 
 

Fig. 2. Closer schema of one specific hub with its 

located facilities and transportation flows between its 

facilities and their customer via vehicles. 
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Fig. 3. Schema of M facilities on T period time horizon 

indicating the active facility in black. 

 

4-2. Indices  

j, k, l, O  {1,..,N} Node numbers 

i 1,…, M Factory numbers 

t, t'  1,…, T Period numbers 

v {1,…,V} Vehicle numbers 

 

4-3. Parameters 

NH Number of hubs. 

     
  Cost of transportation of product unit from factory 

i to customer j via hub k at period t. 

     Maximum cost considered between node l and 

node k. 

    
  Cost of  being active, for factory i located in hub k 

at period t. 

   
  Cost of using vehicle type v at period t. 

  
  Demand of customer j at period t. 

   
  First time opening cost of factory i in hub k at 

period t. 

   
  Reopening cost of factory i in hub k at period t. 

   
    Minimum production capacity of factory i in hub 

k. 

   
    Maximum production capacity of factory i in hub 

k. 

    Capacity of vehicle v. 

MM A positive large number. 

 

 

4-4. Decision variables 

   Maximum cost of a path between any two nodes 

by using the respective hub radii.  

    Maximum covering radius of hub k. 

    1 if customer node l is allocated to hub k; 0, 

otherwise. 

   
  1 if factory i located in hub k at period t is active; 

0, otherwise. 

   
  1 if factory i located in hub k at period t is opened 

for the first time; 0, otherwise.  

   
  1 if factory i located in hub k at period t is 

reopened; 0, otherwise. 

   
  Dedicated capacity to facility i located in hub k at 

period t. 

    
  Number of units produced by factory i located in 

hub k and transported to customer j at period t. 

    
  1 if vehicle v is selected for shipping the product to 

customer node j via hub k at period t; 0, otherwise.     

   
  Number of vehicles type of v used at period t. 

 

By using the above-mentioned notations, the presented 

mathematical programming model for the concerned p-hub 

covering location allocation problem is as follows: 
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           (27) 

    
             (28) 

   
                  (29) 

 

Objective function (1) tries to minimize: (i) the maximum 

value of the sum of the radius of hubs k and o as well as the 

maximum cost between hubs k and o multiplied by 

discount factor ; (ii) the transportation costs between each 

facility and customer; (iii) the opening costs of facilities in 

all hubs locations; (iv) the reopening costs of facilities in 

all hubs locations; (v) the using costs of vehicles serving to 

ship goods between customers and hubs. In Constraint (2), 

the maximum value of the sum of the radius of hubs k and 

o, as well as the maximum cost between hubs k and o 

multiplied by discount factor  , is computed for all hub 

centers. Note that zr is just one variable.  Constraint (3) 

defines the maximum covering radius based on the 

considered cost providing the dedicated customer. 

Constraint (4) guarantees that exactly NH hubs are 

selected, while Constraint (5) ensures that every node is 

assigned to exactly one hub. Constraint (6) guarantees that 

customer l is dedicated to hub k providing that hub k is 

preformed. Constraint (7) ensures that facility i in hub k 

and period t is active if hub k is formed. Constraint (8) 

implies that facility i in hub k and period t is opened if hub 

k is formed. Constraint (9) implies that facility i in hub k 

and period t is reopened if hub k is formed. 

Constraint (10) implies that when the facility i in hub k and 

period t is opened then facility i in hub k and period t will 

be active as well. Constraint (11) guarantees that facility i 

can be opened or reopened provided that in the previous 

period facility iis inactive. Constraint (12) makes sure that, 

over time, facility i can be opened only once. Constraint 

(13) implies that facility i can be reopened if in the 

previous periods it has been opened once. Constraint (14) 

ensures that if the facility is active, in the previous periods 

it has been opened. Constraint (15) ensures that the total 

transported goods to customers in each period is equal to 

the dedicated capacity of facility i in period t. Constraint 

(16) guarantees that transportation is implemented from 

facility i in hub k at period t to customer j, provided that 

hub k is also preformed. Constraint (17) guarantees that the 

total amount of transported goods to customer j is greater 

than the related demand.  

Constraints (18) and (19) make sure that the dedicated 

capacity of facility i falls in the range of the minimum and 

maximum defined capacities, respectively. Constraint (20) 

implies that the total amount of commodities transported 

from facilities does not exceed the total vehicle capacity in 

period t. Constraint (21) computes the total number of type 

v vehicles used in period t. Constraint (22) implies that for 

each path between hub k and customer j at period t one 

vehicle type v is used. Constraints (23) to (26) relate to the 

binary restriction. Constraints (27) to (29) define the lower 

limits of considered variables. Note that for the last 

constraint an integer value is required. 

 

5. Robust Optimization Model 
To apply the robust optimization (RO) model the 

transportation costs, maximum costs between nodes, costs 

of  factories being active , costs of using vehicles, demands 

of customers, first time opening costs of factories, 

reopening costs of factories, minimum production 

capacities of factories, maximum production capacities of 

factories, and capacities of vehicles are treated as uncertain 

parameters. In this section we briefly describe the 

principles of RO. For further details, readers may refer to 

[2]. Consider the following linear program (LP): 

 

         (30) 

s.t.:  

     (31) 

where     is the vector of decision variables,     is 

the right-hand side parameter vector,      is the vector 

of objective function coefficients, and        with 

elements     is the constraint coefficient matrix. 

 In a typical problem (e.g., LP),  ,  and   are assumed to 

be deterministic, and by solving this problem an optimal 

solution is obtained. Some of the data parameters are 

considered as uncertain in the RO approach, yet they lie 

within a set that expresses limits on the uncertainty. The 

foregoing uncertainty set subsequently defines the limits on 

uncertainty, in which a solution will be immunized against. 

That is, the solution x deals with any possible uncertainty 

lying within the set. In the RO approach, the LP model is 

transformed into a robust counterpart by placing each 

constraint that has uncertain coefficients with a constraint 

reflecting the incorporation of the uncertainty set. In the 

following description, we focus on uncertainty in the 

objective function coefficients and constraint coefficient 

matrix. Let ̃  and  ̃  denote an uncertain entry in the 

objective function coefficients and constraint coefficient, 

respectively. In the proposed model, each of the uncertain 

parameters is assumed to vary in a specified closed 

bounded box [3,22,42]. 
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5-1. Box uncertainty  

The general form of this box can be specified as follows:  

 

     {     |     ̅|      

         } 

(32)  

where   ̅ is the normal value of the   as the t-th parameter 

of vector , the positive number    represents the 

“uncertainty scale”, and     is the “uncertainty level”. A 

particular case of interest is     ̅ , which corresponds to 

a simple case where the box contains   whose relative 

deviation from the nominal data can be as wide as  . 

According to the above description, the robust counterpart 

of the LP model expressions (33) to (36) can be stated as 

expressions (36) to (40): 

 

Mathematical model:  

 

       ̃     (33) 

s.t.  

 ̃    (34) 

    ̃ (35) 

    {   } (36) 

 

Robust counterpart mathematical model:  

 

                      (37) 

s.t.   

 ̃           ̃      
               (38) 

 ̃          ̃       
               (39) 

     ̃    ̃      
 

             (40) 

     ̃    ̃      
  (41) 

Constraint  (36).   

 

Bent-Tal et al. [3] demonstrated that in the closed bounded 

box, the robust counterpart problem can be converted to a 

tractable equivalent model where      is replaced by a 

finite set      consisting of the extreme points of    . To 

represent the tractable form of the robust mathematical 

model, Expressions (37) to (40) should be converted to 

their equivalent tractable ones. For Constraint (38), we 

have: 

 ̃         

(42) 
  ̃      

      
  { ̃      | ̃    ̅|      

  } 

            

The left-hand side of expression (41) contains the vector of 

uncertain parameters, while all parameters of the right-

hand side are certain. Thus, the tractable form of the above 

semi-infinite inequality could be written as follows:  

 

∑   ̅
 

             (43) 

    
          {        } (44) 

    
           {        } (45) 

For constraint∑  ̃    
 
      , we only need to augment the 

left-hand side of the Constraint to reflect the uncertainty set 

in the formulation. Formally, in the augmented constraint 

we require the following expression for a given solution    

[1,2] 

 

   
 ̃     

 
{∑  ̃    

 

   
}     

                                                   

(46) 

or 

   
 ̃   | ̃    ̅  |      

 
{∑  ̃    

 

   
}     

                                                    

(47)          

Given the structure of    , the optimal solution of the 

optimization on the left-hand side is as follows: 

 

∑  ̅    
 

   
   ∑    

 |  |
 

   
    

                                                           

(48) 

 

It can be reformulated by:    

 

∑  ̅    
 

   
   ∑    

   
 

   
    

               (49) 

                      (50) 

Similarly, for inequality (40), we have: 

 

 

     ̃  

  ̃      
 

     
 

 { ̃      | ̃    ̅|      
 
} 

   {        } 

 

(51) 

Thus, it can be rewritten as follows: 

 

      ̅      
 
   (52)     

   {        }  

At last, in Equation (41), we have: 

     ̃  

 

                 (53) 

  ̃      
      

  { ̃      | ̃   ̅ |

     
 } 

 

   {        } 
 

Therefore, it can be rewritten as follows: 

 

     ̃      
                  (54) 

   {        }  

     ̃      
                

(55) 

   {        }  
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Regarding the above-mentioned descriptions, the structure 

of the robust counterpart p-hub covering mathematical 

model for the considered uncertain parameters is presented 

as follows: 

 

   ∑∑∑∑(  ̅   
     

      
   

)

 

   

 

   

 

   

 

   

 ∑∑∑  ̅  
 

 

   

   
     

  
 

 

   

 

   

 ∑∑∑  ̅  
 

 

   

   
     

  
 

 

   

 

   

 ∑∑∑   ̅̅ ̅  
 

 

   

   
  

 

   

 

   

   
   

 

 ∑∑   ̅̅ ̅ 
    

  

 

   

  
    

 

   

    

Min    

 

(56) 

(57) 

s.t. 

       
   

    
      

   
          (58) 

       
   

    
       

   
          (59) 

     
  

   
     

  
        (60) 

     
  

   
      

  
        (61) 

     
  

   
     

  
        (62) 

     
  

   
      

  
        (63) 

      
   

   
     

   
        (64) 

      
   

   
      

   
        (65) 

     
      

    
         (66) 

     
      

     
         (67) 

    

           ̅                (68) 

      ̅                   (69) 

∑∑    
 

 

   

  ̅        
 

 

   

 
     (70) 

 ̅  
               

     
         (71) 

 ̅  
               

     
         (72) 

∑∑∑    
 

 

   

 

   

 

   

 ∑  ̅̅ ̅ 

 

   

          
  

   (73) 

    
   

            (74) 

   
  

          (75) 

   
  

          (76) 

   
   

          (77) 

  
           (78) 

Constraints (4) to (16) and (21) to (29). 

 

6. Computational Results 
To appraise the performance of the proposed model, 

four test problems are considered. The size of these 

problems is shown in Table 2.  

 

Tab. 2. Size of test problems 

Problem 

no. 

No. of 

customers

     

No. 

of 

hubs 

(NH) 

No. of 

facilities 

    

No. of time 

periods     

No. of 

vehicles     

1 3 1 3 3 3 

2 3 1 4 4 4 

3 4 2 5 4 5 

4 5 3 6 5 6 

5 6 4 7 5 7 

6 7 5 8 6 8 

Table 3 shows the interval of the generated input 

parameters; namely demands, capacities and costs related 

to each test problem. Note that the parameters are 

generated uniformly between the related lower and upper 

bounds. Table 4 illustrates the number of variables, 

including binary, positive and free ones, and the number of 

formed constraints for each test problem. In this table, for 

each test problem, two deterministic and robust types are 

taken into account. All the instances are carried out with a 

branch-and-bound (B&B) method by using the CPLEX 

solver of the GAMS commercial software to analyze the 

mixed-integer linear model, which is executed on a 

computer with characteristics of Intel(R), Core (TM) 2 Duo 

CPU P8400 @ 2.26 GHz, 3.00 GB of RAM. To do a 

sensitivity analysis, for uncertainty levels of all parameters, 

the analysis has first been investigated. The impact of the 

following four important and efficient factors is then 

evaluated separately. 

 Uncertainly level of the demand. 

 Uncertainly level of the minimum capacity. 

 Uncertainly level of the maximum capacity. 

 Uncertainly level of the vehicle capacity. 
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For the first phase, four test problems with different 

uncertainty levels are taken into account. For the second 

phase, test problem 4 has also been chosen to execute the 

sensitivity analysis. Note that, for the first phase, all 

uncertainty levels have increased simultaneously and for 

the second phase all uncertainty levels are fixed at zero 

values. Then, for considered parameters, it is increased step 

wisely with the 0.1 value.  

 

6-1. Analysis based wholly on the uncertainty level of all 

parameters 

In this section the impact of the uncertainty level of all 

parameters is investigated. The results show that when we 

pass through the higher uncertainty level the more 
objective function is yielded. 

Thus, we obviously have an ascending pattern. Note that 

for a bigger uncertainty level the infeasibility mode also 

occurs. In addition, because we increase the uncertainty 

level simultaneously, the impacts of other parameters are 

not analyzed individually. Table 5 and Figure 4 illustrate 

and depict our results quantitatively. 

 

6-.2. Analysis based on the uncertainty level of the 

demand 

In this respect, and due to importance of the uncertainty of 

demand, only an ascending pattern is reported. Note that 

only some operational constraints are included for this 

feature. Table 6 presents our results numerically, and 

Figure 5 elucidates the associated results graphically. 

 

Tab.  3. Demands, capacities and costs for the four test problems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Tab. 4. Number of variables and constraints of the test problems 

 

 

 

 

 

 

 

 

 
 
 

 
Fig. 4. Robust approach considering the impact of an indefinite level of all parameters 

 
 

Problem size  

N×M×T×V 

 Number of variables  Number of constraints 

Deterministic  Robust  
Deterministic Robust 

Binary  Positive Free  Binary Positive Free  

3×3×3×3 171 121 1  171 292 1  439 763 

3×4×4×4 297 212 1  297 516 1  735 1343 
4×5×4×5 576 425 1  576 1005 1  1297 2457 

5×6×5×6 1225 936 1  1225 2166 1  2546 5006 

6×7×5×7 1836 1122 1  1836 2777 1  3767 7617 
7×8×6×8 3283 2114 1  3283 5102 1  6313 13129 

 

Costs  Capacities  Demands Problem 

no. 𝑹𝒊𝒌𝜽
𝒕  𝑨𝒊𝒌𝜽

𝒕  𝒄𝒗𝒗
𝒕  𝒄𝒂𝒊𝒌𝜽

𝒕  𝒄𝒕𝒊𝒌𝒋𝜽
𝒕  𝒄𝒄𝒍𝒌𝜽  𝒄𝒑𝒗 𝑸𝒊𝒌𝜽

𝒎𝒂𝒙 𝑸𝒊𝒌𝜽
𝒎𝒊𝒏  𝒅𝒕𝒋𝜽 

(4000,7000) (5000,8000) (2500,3500) (2000,3000) (1500,2500) (1000,2000)  (400,800) (5000,10000) (500,1000)  (50,180) 1 
(6500,9500) (7500,10500) (5000,6000) (4500,5500) (4000,5000) (3500,4500)  (1000,1800) (8000,13000) (800,1300)  (130,400) 2 
(9000,12000) (10000,13000) (7500,8500) (7000,8000) (6500,7500) (6000,7000)  (1600,2800) (11000,16000) (1100,1600)  (210,650) 3 

(11500,14500) (12500,15500) (10000,11000) (9500,10500) (9000,10000) (8500,9500)  (2200,3800) (14000,19000) (1400,1900)  (300,900) 4 
(14000,17000) (15000,18000) (12500,13500) (12000,13000) (11500,12500) (11000,12000)  (2800,4800) (17000,22000) (1700,2200)  (390,1150) 5 
(16500,19500) (17500,20500) (15000,16000) (14500,15500) (14000,15000) (13500,14500)  (3400,5800) (20000,25000) (2000,2500)  (480,1400) 6 
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Tab. 5. Comparison of outputs based on the uncertainty level of all parameters in terms of the time and OFV

Problem size 

N×M×T×V 

Uncertainty level 

(ρ) 

OFV Time (Sec.) 

Deterministic Robust Deterministic Robust 

3×3×3×3 

0 

1105416.5 

1105416.5 

0.45 

0.172 

0.2 1578727.8 1.45 

0.4 2136115.1 0.344 

0.6 2777578.4 0.188 

0.8 Infeasible Infeasible 

1 Infeasible Infeasible 

3×4×4×4 

0 

14897373 

14897373 

0.266 

0.25 

0.2 21420396.24 0.265 

0.4 29124602.36 0.329 

0.6 38010090.56 0.234 

0.8 Infeasible Infeasible 

1 Infeasible Infeasible 

4×5×4×5 

0 

49619727 

49619727 

0.281 

0.282 

0.2 71600810.88 0.36 

0.4 97378895.32 0.391 

0.6 120717046.4 0.422 

0.8 Infeasible Infeasible 

1 Infeasible Infeasible 

5×6×5×6 

0 

141220459 

141220459.5 

0.516 

0.453 

0.2 201341236.9 0.5 

0.4 273764817.3 0.5 

0.6 353952903.5 0.719 

0.8 Infeasible Infeasible 

1 Infeasible Infeasible 

 

 

6×7×5×7 
 

0 

267378490 

267378490 

1.492 

0.877 

0.2 382860194.64 0.804 

0.4 523111198.96 0.735 

0.6 666625573.76 1.38 

0.8 Infeasible Infeasible 

1 Infeasible Infeasible 

7×8×6×8 

0 

567406943 

567406943 

1.061 

1.11 

0.2 820356005.04 1.189 

0.4 1111371285.92 1.208 

0.6 1459054996.16 1.195 

0.8 Infeasible Infeasible 

1 Infeasible Infeasible 
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Tab.  6. Comparison of outputs based on the uncertainty level of the demand parameter in terms of the time and OFV 

Problem size N×M×T×V Uncertainty level (ρd) 

OFV Time (Sec.) 

Deterministic Robust Deterministic Robust 

5×6×5×6 

0 

141220459 

141220460 

0.516 

0.516 

0.1 153560700 0.531 

0.2 167784761 0.484 

0.3 181348863 0.515 

0.4 195546885 0.515 

0.5 209136671 0.485 

0.6 223378460 0.515 

0.7 236923593 0.531 

0.8 251208900 0.562 

0.9 266405522 0.5 

1 281706859 0.516 

 
 

 

Fig. 5. Robust approach considering the impact of an 

indefinite level of the demand parameter 

 
6-.3. Analysis based on the uncertainty level of the 

minimum capacity 

In this respect there is no change in the objective function 

values through various uncertainty levels. It seems that the 

minimum capacity has no significant impact on the feasible 

solution area. Table 7 reports our results numerically, and 

Figure 6 clarifies them graphically. 

 
Tab. 7. Comparison of outputs based on the uncertainty 

level of the minimum capacity of the facility parameter 

in terms of the time and OFV 

Problem 

size 

N×M×T×V 

Uncertainty 

level (ρQmin) 

OFV Time (Sec.) 

Deterministic Robust Deterministic Robust 

5×6×5×6 

0 

141220459 

141220460 

0.516 

0.5 

0.1 141220460 0.515 

0.2 141220460 0.484 

0.3 141220460 0.515 

0.4 141220460 0.406 

0.5 141220460 0.515 

0.6 141220460 0.453 

0.7 141220460 0.515 

0.8 141220460 0.64 

0.9 141220460 0.516 

1 
141220460 0.516 

 
Fig. 6. Robust approach considering the impact of an 

indefinite level of the minimum capacity of the facility 

parameter 

 

6-4. Analysis based on the uncertainty level of the 

maximum capacity 

In this respect, there is no change in the objective functions 

up to the definite value of the uncertainty level, that is, 0.7. 

However, after this point a sudden decrease takes place and 

after that there is no feasible solution. To be critical, this 

parameter is the main reason for this pattern. In other words, 

this parameter is linked to satisfy the demands, and for some 

uncertainty levels this infeasibility occurs. Table 8 reports 

the results numerically, and Figure 7 clarifies them 

graphically. 

 
6-5. Analysis based on the uncertainty level of the vehicle 

capacity 

In this respect, as for maximum capacity, the same behavior 

is depicted. As the vehicle capacity is linked to the number 

of vehicles and to the amount of shipment, the importance of 

this parameter is recognized as well. Up to the definite point 

of the uncertainty level, there is no significant change; 

however, after this point a sudden decrease in the objective 

function takes place and after that there are no feasible 

solutions. Table 9 and Figure 8 illustrate and depict our 

results numerically and graphically.  
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Tab. 8. Comparison of outputs based on the uncertainty 

level of the maximum capacity of the facility parameter 

in terms of the time and OFV 

Problem 

size 

N×M×T×V 

Uncertainty 

level 

(ρQmax) 

OFV Time (Sec.) 

Deterministic Robust Deterministic Robust 

5×6×5×6 

0 

141220459 

141220460 

0.516 

0.5 

0.1 141220460 0.516 

0.2 141220460 0.5 

0.3 141220460 0.484 

0.4 141220460 0.469 

0.5 141220460 0.515 

0.6 141220460 0.547 

0.7 141220460 0.516 

0.8 139176809 0.516 

0.9 Infeasible Infeasible 

1 
Infeasible Infeasible 

 

 
Fig. 7. Robust approach considering the impact of an 

indefinite level of the maximum capacity of the facility 

parameter 

 

Tab. 9. Comparison of outputs based on the uncertainty 

level of the vehicle capacity parameter in terms of the 

time and OFV 

 

Problem 

size 

N×M×T×V 

Uncertainty 

level (ρcp) 

OFV Time (Sec.) 

Deterministic Robust Deterministic Robust 

5×6×5×6 

0 

141220459 

141220460 

0.516 

0.5 

0.1 141220460 0.5 

0.2 141220460 0.485 

0.3 141220460 0.484 

0.4 140748749 0.5 

0.5 141327484 0.5 

0.6 141220460 0.5 

0.7 141220460 0.5 

0.8 138752386 0.656 

0.9 Infeasible Infeasible 

1 
Infeasible Infeasible 

 
Fig. 8. Robust approach considering the impact of 

indefinite level of the vehicle capacity parameter 
 

7. Conclusion 
In this paper, a robust environment with a novel p-hub 

covering problem has been investigated. The presented 

model takes into account new features, such as production 

facilities located in hubs and vehicle transporters that ship 

commodities. These facilities are opened once through time 

horizons and can be reopened several times. An objective 

function involving covering, transportation, opening, 

reopening, activation and using vehicles has been taken into 

account. Because of satisfying demands and other 

hypotheses, some operational constraints have also been 

considered. To come close to reality, some strategic 

parameters are regarded as indefinite. A recent extension of 

robust theory is used to investigate and tackle these kinds of 

parameters. The computational results have explained the 

capability of this method for dealing with this uncertain 

environment. A wide sensitivity analysis has also been 

executed to recognize the performance of the model through 

various indefinite levels. The results have shown that, as a 

whole, an ascending pattern is observed; however, for some 

critical parameters some oscillations are depicted. The main 

reasons can be the trade-off between other costs and the 

impact of their operational constraints. In addition, for 

further research on solving the proposed mathematical 

model on a large scale, the use of heuristic and meta-

heuristic algorithms is also proposed. Extending the related 

mathematical model and involving other practical aspects 

such as queuing theory and scheduling in it may also be 

relevant.   
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